

REV 4.8.0 25-April-2011 Proprietary and Confidential www.impinj.com

Copyright ©, Impinj, Inc.
Impinj, Octane, and Speedway are either

 registered trademarks or trademarks of Impinj, Inc.

For more information, contact rfid_info@impinj.com

Embedded Developer’s Guide
Speedway® Reader Application Series
 Embedded Developer’s Guide
Speedway® Reader Application Series

Embedded Developer's Guide

ii . Proprietary and Confidential Revision 4.8.0

Table of Contents
1	
 Introduction ..1	

1.1	
 Purpose ..1	

1.2	
 Scope ...1	

1.3	
 References ...1	

1.4	
 Acronyms ...1	

2	
 Platform Architecture ...3	

2.1	
 Reader Enclosure ...3	

2.1.1	
 Speedway Revolution Power Supply ...4	

2.1.2	
 Speedway Revolution GPIO ..4	

2.1.3	
 Speedway Revolution LEDs ..5	

2.1.4	
 Speedway Revolution Console Port ...6	

2.2	
 Platform Overview ..8	

2.3	
 Flash Organization ...9	

2.3.1	
 System Operating Partition (SOP) ...9	

2.3.2	
 System Persistent Partition (SPP) ..10	

2.3.3	
 Custom Application Partition (CAP) ...10	

2.3.4	
 Upgrade File System ..10	

2.4	
 RAM Allocation ..10	

2.4.1	
 Linux OS ..11	

2.4.2	
 Reader Applications ...11	

2.4.3	
 RAM File System ..11	

2.4.4	
 Custom Applications ..11	

2.5	
 Linux File System ..11	

2.6	
 USB HID Keyboard Emulation ...13	

2.6.1	
 Requires On-Reader Application ...13	

2.6.2	
 USB Cabling ..14	

2.6.3	
 USB Presence ...14	

2.6.4	
 Keyboard Emulation Program (hidkey) ...14	

2.6.5	
 Disconnected Operation ...15	

2.6.6	
 Example USB HID Application ...16	

2.6.7	
 Supported Characters ...17	

2.6.8	
 Performance ...17	

2.7	
 USB Flash Drive AutoRun ..17	

2.7.1	
 USB Flash Drive Preparation ...17	

2.7.2	
 HardwareEvents Stanza in reader.conf ..18	

2.7.3	
 Example Storage Event Handler ..18	

3	
 Platform Boot Process..19	

3.1	
 Bootloader ...19	

3.1.1	
 Default Restore ..19	

3.1.2	
 Image Selection ..20	

3.2	
 Operating System ..21	

3.2.1	
 Mounter ..21	

3.2.2	
 Run-Time Applications ..23	

4	
 Software Development Process ...25	

4.1	
 Tools ..25	

Embedded Developer's Guide

Revision.4.8.0 Proprietary and Confidential iii

4.2	
 Distribution ..25	

4.3	
 Accessing the Linux Shell ...26	

4.3.2	
 Executing the Custom Application ..27	

4.3.3	
 Automatically Starting a Custom Application ...27	

4.3.4	
 Custom Application Library Dependencies ...28	

4.4	
 Firmware Upgrade Procedure ..28	

4.4.1	
 Image Versioning Scheme ...29	

4.4.2	
 RShell Upgrade Methods ...29	

4.4.3	
 OSShell Upgrade Methods ..29	

4.5	
 Reader Configuration ..31	

4.5.1	
 Configuration File Format ...31	

4.5.2	
 Hardware Events ..32	

4.5.3	
 Partner Features ...32	

4.5.4	
 Software Features ...33	

4.5.5	
 Example Configuration File ...33	

5	
 Revision History ..35	

Embedded Developer's Guide

iv . Proprietary and Confidential Revision 4.8.0

Table of Figures
Figure 2-1 Speedway Revolution Hardware Connections .. 3	

Figure 2-2 Speedway Revolution Antenna Connections .. 4	

Figure 2-3 DE15 Female Connector ... 5	

Figure 2-4 DE9 Female Connector ... 7	

Figure 2-5 RJ45 Male Connector .. 7	

Figure 2-6 Speedway Revolution Hardware Block Design .. 8	

Figure 2-7 Speedway Revolution Flash Organization .. 9	

Figure 2-8 Speedway Revolution Image Organization ... 9	

Figure 2-9 Speedway Revolution File System Layout ... 12	

Figure 3-1 Speedway Revolution Boot Procedure .. 19	

Figure 3-2 Image Selection and Boot ... 20	

Figure 3-3 Example Customer Upgrade Application ... 23	

Figure 3-4 Delaying Custom Application for Network .. 24	

Figure 4-1 Enabling Access to OSShell .. 26	

Figure 4-2 Sample Example Application Output .. 27	

Figure 4-3 Example Customer Start Application .. 28	

Figure 4-4 Example Reader Configuration File .. 34	

Embedded Developer's Guide

Revision.4.8.0 Proprietary and Confidential v

Table of Tables
Table 1-1 References .. 1	

Table 2-1 DE15 Connector Pin-Out ... 5	

Table 2-2 Power LED Patterns ... 6	

Table 2-3 Reader Status LED Patterns ... 6	

Table 2-4 Antenna Status LED Patterns ... 6	

Table 2-5 RS232 DE9-to-RJ45 Pin Mapping ... 7	

Table 3-1 Factory Configuration and Default Restore ... 20	

Table 3-2 Default Restore Button and LED Behavior .. 20	

Table 3-3 Mounter Operations Based on Upgrade Image Content ... 21	

Table 3-4 Upgrade Application Environment Variables .. 22	

Table 4-1 RShell Upgrade Command Summary .. 29	

Table 4-2 OSShell Upgrade Command Summary .. 31	

Table 4-3 Configuration Stanzas .. 31	

Table 4-4 Hardware Event Notification Types ... 32	

Table 4-5 Mass Storage Event Variables .. 32	

Table 4-6 Customizable Network Services ... 33	

Revision.4.8.0 Proprietary and Confidential 1

1 Introduction
1.1 Purpose
This document describes the Speedway Revolution platform and high-level architecture. It is
intended for embedded software developers designing custom application software to run on the
Speedway Revolution reader.

1.2 Scope
This document describes at a high-level how to use the basic functionality of the Speedway
Revolution reader. It also provides detailed information about the platform architecture provided
by Impinj to custom application embedded software developers.

This document concentrates on an embedded developer’s view of the Speedway Revolution
Reader platform. The Revolution Embedded Developers Kit (EDK) contains further
documentation (as web pages) detailing the use of several Impinj supplied tools necessary to
build and deploy embedded applications.

1.3 References
Table 1-1 References

Document Version
EPCglobal: Low Level Reader Protocol (LLRP) 1.0.1

Speedway Revolution User’s Guide 4.8

Speedway Revolution RShell Reference Manual 4.8

Speedway Revolution Firmware Upgrade Reference Manual API 4.8

Octane LLRP 4.8

1.4 Acronyms
API Application Programming Interface
CAP Custom Application Partition
CLI Command Line Interface
CPU Central Processing Unit
DC Direct Current
DE9 9-pin D-sub E-shell connector1
DE15 15-pin D-sub E-shell connector1
DHCP Dynamic Host Configuration Protocol
FCR Factory Configuration Restore
FDR Factory Default Restore

1 DE9 and DE15 connectors are often incorrectly referenced as DB9 and DB15.

2 . Proprietary and Confidential Revision 4.8.0

FPGA Field Programmable Gate Array
FS File System
FTP File Transfer Protocol
GPIO General Purpose Input/Output
IP Internet Protocol
LED Light Emitting Diode
LLRP Low Level Reader Protocol
MAC Media Access Control
MIPS Million Instructions per Second
MTD Memory Technology Device
NC Not Connected
NFS Network File System
NTP Network Time Protocol
NVP Name/Value Pair
PoE Power over Ethernet
RAM Random Access Memory
RF Radio Frequency
RFID Radio Frequency Identification
RP-TNC Reverse Polarity-Threaded Neill-Concelman connector
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory
SOP System Operating Partition
SPP System Persistent Partition
SSH Secure Shell
UHF Ultra-High Frequency
URI Universal Resource Identifier (RFC 3986)
USB Universal Serial Bus
LLA Link-Local Addressing
mDNS Multicast Domain Name System

Revision.4.8.0 Proprietary and Confidential 3

2 Platform Architecture
The Speedway Revolution R220 and R420 readers are fixed UHF Gen2 RFID tag readers that
provide network connectivity between tag data and enterprise system software.

This Embedded Developer's Guide provides instructions on how to configure the Speedway
Revolution reader application program interface, called the Custom Application Partition (CAP).
It assumes the embedded software developer is familiar with appropriate networking facilities,
the EPCglobal Gen2 specification, and general principles of RFID system management.

2.1 Reader Enclosure
Refer to the figures below for pictures of the Speedway Revolution reader enclosure with major
ports, connectors, and status indicators clearly labeled. Figure 2-1 depicts the hardware (network,
power, Ethernet, etc.) ports, and Figure 2-3 depicts the antenna ports and status LEDs.

 Figure 2-1 Speedway Revolution Hardware Connections

+24V DC
Locking Connector

(powered via external
power module)

10/100 BASE-T
Ethernet

(Power over
Ethernet capable)

Default
Restore

(remove screw
to access)

USB 1.1
Device Port

USB 1.1
Host Port

Console
RJ45

Connector
(RS232)

Multi-Purpose DE15
Connector

(4 GPI, 4 GPO, RS232
Serial, +5V DC/200 mA)

The Speedway Revolution reader is equipped with the following hardware connectors:

• Locking 24V DC power supply connector (labeled +24V DC 1.0A)
• RJ45 Power-over-Ethernet capable Ethernet jack (labeled ETHERNET)
• USB 1.1 Type B port (labeled USB DEVICE)
• USB 1.1 Type A port (labeled USB HOST)
• RJ45 RS232 Serial Console connector (labeled CONSOLE)
• Female DE15 connector with user I/O capability. Secondary RS232 serial, four

optoisolated inputs, four optoisolated outputs. See section 2.1.2 for the details and pin
out. (labeled GPIO)

4 . Proprietary and Confidential Revision 4.8.0

Figure 2-2 Speedway Revolution Antenna Connections

RP-TNC RF
Antenna

Connector

Antenna
Activity LED Status LED Power LED

The Speedway Revolution reader is equipped with the following antenna connectors and LEDs:

• Two (R220, pictured) or four (R420) female RP-TNC antenna connectors (labeled
ANT1-ANTn)

• Two (R220, pictured) or four (R420) antenna activity LEDs (see section 2.1.3)
• One status and one power LED (see section 2.1.3)

2.1.1 Speedway Revolution Power Supply
Speedway Revolution readers can be powered by either an external 24V power supply, or via
Power over Ethernet (PoE). Only one power supply is active at a time, and the default power
supply is via the 24V external supply when connected. To use Power over Ethernet, the 24V
external supply must be disconnected, and the Ethernet port connected to a cable attached to
either a PoE injector, or a PoE-enabled network switch. A change in active power supply (such
as pulling the 24V external supply while a PoE-enabled Ethernet cable is attached) will result in
a reader reset.

2.1.2 Speedway Revolution GPIO
Speedway Revolution readers provide the user with a multipurpose I/O port that contains a
RS232 serial port, four optoisolated inputs, four optoisolated outputs, and a +5V supply. These
features are accessed through a DE15 connector mounted on the back of the reader.

The four optoisolated inputs have a range of 0-30V. The reader will treat an input of 0-0.8V as
logic 0, and an input of 3-30V as logic 1. The reader has a per-input debounce interval that is
configurable via LLRP (see Octane LLRP documentation for more information). This value
dictates the minimum pulse width of an input. Impinj recommends that external devices
guarantee a minimum pulse width of at least 100 milliseconds.
Four optoisolated outputs are also provided. An external power supply must be connected
between V+ and V- for the GPIO outputs to function. The maximum voltage for this supply is
30V. When the user configures a selected GPIO output via LLRP to output logic 0, an isolated
FET switch within the reader effectively shorts that output to V- with a current sink capability of
up to 200mA. When the user configures a selected GPIO output to logic 1, the selected output is
pulled to V+ through a 10K resistor. If GPIO isolation is not required, the reader provides a +5V
supply and a ground pin on the DE15 which can be connected to V+ and V-.

See Figure 2-3 and Table 2-1 for details regarding the pin out of the DE15.

Revision.4.8.0 Proprietary and Confidential 5

Figure 2-3 DE15 Female Connector

10

5 4 3 2 1

9 8 7 6

1112131415

Table 2-1 DE15 Connector Pin-Out

Pin Signal Name Description
1 USER_5V +5V supply

2 RS232_RXD RS232 serial receive

3 RS232_TXD RS232 serial transmit

4 DB_DEFAULT_RST Factory default restore (currently unused)

5 VPLUS Positive supply for optoisolated GPO

6 VMINUS Negative supply for optoisolated GPO

7 GND Ground

8 USEROUT_0 General purpose output 0 (LLRP 1)

9 USEROUT_1 General purpose output 1 (LLRP 2)

10 USEROUT_2 General purpose output 2 (LLRP 3)

11 USEROUT_3 General purpose output 3 (LLRP 4)

12 USERIN_0 General purpose input 0 (LLRP 1)

13 USERIN_1 General purpose input 1 (LLRP 2)

14 USERIN_2 General purpose input 2 (LLRP 3)

15 USERIN_3 General purpose input 3 (LLRP 4)

2.1.3 Speedway Revolution LEDs
The Speedway Revolution has several LEDs to indicate reader operational status. The three
primary LED categories are power, reader status, and antenna status. Each LED has its own blink
patterns to convey status to the user. Table 2-2 documents the defined patterns for the power
LED. Table 2-3 documents the defined patterns for the reader status LED. Lastly, Table 2-4
documents the defined patters for the antenna status LEDs.

6 . Proprietary and Confidential Revision 4.8.0

Table 2-2 Power LED Patterns

LED State Reader State
Solid RED (after power-on or reset) Power applied, attempting to start boot code

OFF Default Restore button pressed

One short RED blink
Configuration Default Restore detected
(see section 3.1.1)

Two short RED blinks
Factory Default Restore detected
(see section 3.1.1)

Blinking RED (4 Hz) Unable to boot (see console for details)

Solid GREEN Done booting, starting application image

Blinking ORANGE (1Hz) USB flash drive upgrade in progress

Blinking RED (2 Hz) USB flash drive upgrade failure

Table 2-3 Reader Status LED Patterns

LED State Reader State
OFF Application image booting, RFID not available

Alternating RED and GREEN Application image booting, RFID not available, File
system operation in progress (after upgrade)

Solid GREEN Application image booted, RFID available

Two short GREEN blinks LLRP connection active

One short GREEN blink LLRP active, but no LLRP connection

Blinking ORANGE Inventory active, blinking rate increases with an
increased number of tags in the reader FOV

Table 2-4 Antenna Status LED Patterns

LED State Reader State
OFF Antenna inactive

Solid GREEN Antenna actively transmitting

2.1.4 Speedway Revolution Console Port
The Speedway Revolution console port uses RS232 serial over a RJ45 cable. As most computers
do not have a RJ45 COM port (DE9 COM ports are typical), a RJ45-to-DE9 converter cable will
likely be required to connect to the reader’s console port. The Revolution RJ45 port uses a
Cisco-compatible pin out and thus these cables are readily available from many third-party
vendors. However, in the event that such a cable is unavailable and a cable must be built by
hand, Table 2-5 documents the pin mapping from a female DE9 connector to a male RJ45

Revision.4.8.0 Proprietary and Confidential 7

connector. Note that the table below is complete in terms of the pin-to-pin mapping, but only
RJ45 pins 3 (RD), 4 (GND), and 6 (TD) are required for proper operation.

Figure 2-4 DE9 Female Connector

12345

6789

Figure 2-5 RJ45 Male Connector

12345678

Front View

1 2 3 4 5 6 7 8

Top View

Table 2-5 RS232 DE9-to-RJ45 Pin Mapping

RS232 Signal DE9 Pin RJ45 Pin Color (typ.)
Data Carrier Detect 1 NC N/A

Receive Data 2 3 Black

Transmit Data 3 6 Yellow

Data Terminal Ready 4 7 Blue

Signal Ground 5 4 Red

Data Set Ready 6 2 Orange

Request to Send 7 8 Brown

Clear to Send 8 1 Gray

Ring Indicator 9 NC N/A

8 . Proprietary and Confidential Revision 4.8.0

2.2 Platform Overview
The Speedway Revolution Reader is a single processor system (see Figure 2-6 for a hardware
block diagram) with the control platform based on an Atmel AT91SAM9260 running at 200
MHz. Air-protocol and time-critical functions are implemented within an FPGA. This
architecture arrangement leaves anywhere from 50% to 90% of the control CPU MIPS
(depending on the inventory load) available for custom application software. The control
microprocessor also has 128 Mbytes of flash memory and 64 Mbytes of SDRAM available for
firmware and data storage. See sections 2.3 and 2.4 for flash and SDRAM allocation schemes,
respectively, to determine how much is available for custom application development.

Figure 2-6 Speedway Revolution Hardware Block Design

Atmel AT91SAM9260

SDRAM
64 MB

NAND Flash
128 MB

Ethernet

USB

RS-232 RS-232

FPGA

Discrete Logic

RF Switch

SPI Bus

USB Type-A
USB Host

(USB HOST)

USB Type-B
USB Device

(USB DEVICE)

RJ45
PoE Ethernet
(ETHERNET)

RJ45
Serial Console
(CONSOLE)

DE15
Serial, GPIO

(GPIO)

RF Port 1
(ANT1)

RF Port 2
(ANT2)

RF Port 3
(ANT3)

RF Port 4
(ANT4)

CPU

Modem

Optional

() Enclosure Label

Revision.4.8.0 Proprietary and Confidential 9

2.3 Flash Organization
The Speedway Revolution flash device is logically partitioned as shown in Figure 2-7. The dual
image architecture supports a minimal downtime during firmware upgrades and provides for
maximum robustness for upgrade failure scenarios (power outage, etc.). The firmware upgrade
agent downloads the secondary image into the upgrade file system in the background while the
primary image runs. The availability of the second image supports a firmware fallback if the
latest upgrade does not work properly or if the primary image is corrupted. This dual image
partitioning also supports a return to factory default firmware.

Figure 2-7 Speedway Revolution Flash Organization

Image 1

R
es

er
ve

d

Image 2 Upgrade FS

R
es

er
ve

d

39.5 MB 39.5 MB 34.5 MB 10.5 MB4 MB

Within each firmware image are individual JFFS2 formatted partitions used to logically organize
the system software. Each image is partitioned as shown in Figure 2-8. The details regarding
each partition are in the sections that follow. The Linux OS may report the file systems being
larger than specified here, this is to account for redundancy in the NAND flash memory.

Figure 2-8 Speedway Revolution Image Organization

SOP SPP CAP

16 MB

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

8 MB 8 MB2.5 MB 2.5 MB 2.5 MB

2.3.1 System Operating Partition (SOP)
This is the primary system partition of the Speedway Revolution reader. Embedded developers
may not modify the contents of this partition. This partition is mounted read-only at / (root) and
consumes 16 Mbytes of flash memory. The primary contents of the SOP are:

• Linux 2.6.18 kernel
• FPGA firmware
• RFID management software
• Reader management (RShell, see Speedway Revolution RShell documentation)
• Logging management software
• Firmware upgrade control
• System watchdog software
• Factory default data

10 . Proprietary and Confidential Revision 4.8.0

2.3.2 System Persistent Partition (SPP)
This is the persistent partition of the Speedway Revolution reader. Embedded developers may
not modify the contents of this partition. Files in this partition are automatically generated and
maintained by the software running on the reader. Manual manipulation of these files will result
in undefined reader behavior. This partition is mounted read-write at /mnt/spp and consumes 8
Mbytes of flash memory. The primary contents of the SPP are:

• Reader configuration (e.g. network settings, LLRP configuration, log settings)
• Reader logs (both application logs and error logs)
• Reader crash information (used internally by Impinj for debugging)

2.3.3 Custom Application Partition (CAP)
This is the custom application partition of the Speedway Revolution Reader. Embedded
developers are free to make use of this partition as required by their application (subject to the
constraints within). The use of this partition is the primary focus of this document. This partition
may or may not be present on a reader, depending on whether a CAP partition was included in
the upgrade file. If a CAP is present on the reader, this partition is mounted read-write at /cust
and consumes 8 Mbytes of flash memory. If a CAP is not present on the reader, the /cust
directory will be mounted read-only and will be empty. The primary contents of the CAP are
typically:

• Custom application software
• Extra libraries or tools required by the custom application
• Configuration files used by the custom application
• Custom application logs

Note that while this partition is mounted read-write, custom application developers should limit
the use of this file system for dynamic data storage to avoid excessive wear of the flash memory.
Where frequent modifications are required within a file system, it is recommended that custom
application developers use the RAM file system (section 2.4.3).

2.3.4 Upgrade File System
The upgrade file system is not included within a firmware image and thus is not considered a
partition like the previous sections have discussed. Instead, the upgrade file system is used by the
active image (regardless of which is active) to perform firmware upgrades. During an upgrade,
the firmware upgrade application downloads the upgrade image to this file system. This avoids
requiring the image file to be stored in RAM, thus increasing the RAM available for Speedway
and custom applications. However, this means that this file system must always be empty or the
upgrade process will fail. Thus embedded developers are prohibited from using this space, and
anything placed here may be deleted at any time. This file system is mounted read-write at
/mnt/ufs and consumes 34.5 Mbytes of flash memory.

2.4 RAM Allocation
The Speedway Revolution SDRAM is used for several purposes during runtime. While the Linux
kernel manages the allocation of the available RAM, the total RAM available is limited and
custom application developers should be aware of the restrictions imposed by a finite amount of
RAM and zero swap space. The RAM on the reader is shared between the Linux OS, reader
applications, custom applications, and the RAM file system.

Revision.4.8.0 Proprietary and Confidential 11

2.4.1 Linux OS
It is impossible to accurately measure the total RAM required by the Linux kernel and its
associated drivers. However, certain kernel file systems and drivers have well known
requirements. As of Octane 4.6, the Linux kernel requires approximately 10 Mbytes of RAM.

2.4.2 Reader Applications
The reader applications stored in the SOP (section 2.3.1) control every aspect of the Speedway
Revolution reader. Be it RFID operations, firmware upgrades, system management, or log
control, each of these applications is critical to the reader operation and each application requires
RAM. As of Octane 4.4, reader applications require approximately 32 Mbytes of RAM.

2.4.3 RAM File System
The RAM file system is available as temporary storage for dynamic data. This is the
recommended file system to use for data that is volatile, requires fast access, or need not persist
across reader resets. Embedded software developers should use this file system whenever
possible in place of the CAP (section 2.3.3) to avoid flash wear. This file system is mounted
read-write at /tmp and consumes 1 Mbyte of RAM.

2.4.4 Custom Applications
Custom applications in theory may use the remaining RAM at their discretion. However, it is
imperative that embedded developers understand the dynamic memory requirements of a real-
time system. While the used memory presented in this section is accurate, system activity may
cause fluctuations in the required memory (such as during a firmware upgrade). To ensure proper
system operation, Impinj recommends that custom applications consume no more than 8 Mbytes
of RAM. Failure to do so may result in abnormal system behavior and possible system reset as
the available memory approaches zero.

2.5 Linux File System
During the boot process, the mounter application determines which of the two images is active
and mounts the appropriate file systems on the flash MTD devices (see section 3.2.1). Thus
custom applications need not concern themselves with the dual image design. The standard
Linux file system is always guaranteed to map to the correct image. Figure 2-9 depicts the
Speedway Revolution file system and how each directory is mapped into the associated memory
devices.

12 . Proprietary and Confidential Revision 4.8.0

Figure 2-9 Speedway Revolution File System Layout

SOP SPP CAP

conf

core

log

sys

Upgrade FS

/

 bin

 cust

 dev

 etc

 home

 lib

 media

 mnt

 nfs

 spp

 ufs

 opt

 proc

 root

 sbin

 srv

 sys

 tmp

 usr

 var

upgrade

RAM FS

Kernel Virtual FS

Root File System

Mount Point

Revision.4.8.0 Proprietary and Confidential 13

2.6 USB HID Keyboard Emulation
It is possible for your on-reader application to send data through USB to a PC or other computer.
This section describes how to use the hidkey program which provides an emulation of a USB
HID (Human Interface Device) keyboard. To the PC the Speedway Revolution RFID Reader
appears to be a keyboard with somebody typing on it.

Octane 4.4.0 or later is required for this feature.

2.6.1 Requires On-Reader Application
To take advantage of the USB device interface, an on-reader application is necessary; this must
be cross-compiled for the target. The Impinj SpeedwayR EDK would be an ideal environment to
create such an application. The USB functionality is only accessible Linux OS, so OSShell
access is required to develop such an application.

Speedway Revolution RFID Reader

Your
Application

hidkey
program

USB
subsystem
and
drivers

PC

Your application starts
hidkey using the popen()
library function.

Your application sends
characters using the
fprintf() function.

The hidkey program takes care of
the detailed interactions with the
USB subsystem

To the PC the reader
looks like a USB
keyboard

14 . Proprietary and Confidential Revision 4.8.0

2.6.2 USB Cabling
Of course, an ‘A-B’ USB cable is necessary to connect the reader (device) to the host (e.g. a PC).
Connection to the host will almost certainly be via one or more USB hubs. The host and any
hubs should be USB 2.0 compliant.

2.6.3 USB Presence
Based on the behavior of other USB devices, when initially attaching the reader to the host, one
would expect the host to identify the reader. This is not the case. An on-reader application must
start the USB HID Keyboard Emulation utility before any USB activity will begin. The reader
can automatically start the application each time it boots, in which case the reader will respond
as a USB device when either attached or at power-up (while attached).

2.6.4 Keyboard Emulation Program (hidkey)
The USB HID Keyboard Emulation utility is an executable program named ‘hidkey’ included in
the Speedway Revolution’s read-only System OS Partition (SOP) at the following path:

/opt/ys/usb/hidkey

‘help’ passed as a command line option shows a summary of its use and command line options.

USB A-B Cable

Insert the B side of
the USB cable into
the Speedway
Revolution USB
Device port.

Insert the A side
of the USB cable
into the USB hub
or PC.

Revision.4.8.0 Proprietary and Confidential 15

root@SpeedwayR-00-00-00:~# /opt/ys/usb/hidkey help

USB HID Keyboard Emulation Driver

Version: 000.000.010400.009_126_835_2102

Usage: /opt/ys/usb/hidkey [Options]

Options:

 ReportInterval=<N> (default is 10ms)

 KeyDelay=<K>,<D>[:<K>,<D>[...]] (upto 10 pairs)

 SerialNum=Device|Random (default is Device)

 SysLog=Emerg|Alert|Crit|Error|Warning|Notice|Info|Debug

 DbgLvl=Emerg|Alert|Crit|Error|Warning|Notice|Info|Debug|Debug1|Debug2

Notes: #

 Intervals and <D>elays are in mS, <K>eys are ASCII codes

 Default SysLog is Error, default DbgLvl is Emerg

root@SpeedwayR-00-00-00:~

Because piping commands is well supported by the Bash shell we can start with a shell based
example. In order to proceed we’ll need to start an application on the Windows PC host that
accepts keyboard input, an editor (e.g. Notepad) or Spreadsheet (e.g. Excel) will work fine.

Next, the reader can be connected to the PC. Nothing will happen yet, only when the hidkey exe
is started will the reader behave like a USB device and begin to enumerate.

From OSShell, type the following:

echo “RFID That Just Works!” | /opt/ys/usb/hidkey

Before enumeration completes keyboard input must be directed to the Windows application.
If this is the first time the driver is used pop-ups identifying the device will flash up from the
Windows system tray’s USB icon.
After a short pause (approx 20 seconds) the echoed string should appear in the application on the
host. This pause is inserted by hidkey to allow enumeration to complete.

2.6.5 Disconnected Operation
Should the reader become disconnected the hidkey program will continue to consume and
discard new data. As there is no pre-defined delimiter grouping reports, a partial report may be
sent as a consequence of a disconnection or re-connection. It is expected that applications can be
started and re-started while there is no report activity.
When starting the hidkey program, if a USB connection is not present, hidkey will discard all
input data until a connection is established and enumeration completes.

16 . Proprietary and Confidential Revision 4.8.0

2.6.6 Example USB HID Application
Here is an example of how the hidkey program can be used.
/**
 * Application Example
 **
 * Outline:
 * An example application that opens the USB HID Keyboard Emulation program
 * (hidkey) in a non-blocking (by default) mode.
 *
 ***/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#define ARRAYSIZE(a) sizeof(a)/sizeof(a[0])
#define name "MyApp"

int main(void)
{
 int cntr;
 FILE * pipe_fp;
 int ret;
 int pipe_fd;
 int c;

 /* ‘RFID report like’ test data */
 char *strings[] = {
 “2009-09-03T00:12:39.705135\tEPC96\t76636575773F6B493FD7A981\n”,
 “2009-09-04T00:12:40.124143\tEPC96\t76636575773F6B493FD7C74B\n”,
 “2009-09-06T00:12:40.635294\tEPC96\t76636575773F6B4934B472A9\n”
 };

 /* Open the application with a pipe to its stdin */
 fprintf(stderr, "%s: Opening pipe\n", name);
 if (NULL == (pipe_fp = popen("/opt/ys/usb/hidkey ", "w")))
 {
 perror("popen");
 exit(1);
 }

 /* Get the file descriptor (from the file pointer) */
 if (-1 == (pipe_fd = fileno(pipe_fp)))
 {
 perror("fileno");
 exit(1);
 }
 fprintf(stderr, "%s: Got file descriptor (%d)\n", name, pipe_fd);

 /* Limit the pipe's buffer size to a (minimal) fixed size */
 /* - this stops addional buffering being allocated */
 setbuf(pipe_fp, NULL);

 /* Wait for enumeration to complete, otherwise driver discards */
 sleep(20);

 /* Use fputs() */
 for(cntr=0; cntr<ARRAYSIZE(strings); cntr++)
 {
 ret = fputs(strings[cntr], pipe_fp);
 if(EOF == ret)
 {
 /* Did the write fail because the device is backed-up ? */

Revision.4.8.0 Proprietary and Confidential 17

 if(errno != EWOULDBLOCK)
 {
 perror("fputs");
 exit(1);
 }
 }
 }
 /* Flush the pipe (won't necessarily empty it) */
 fflush(pipe_fp);

 /* Close stream opened by popen. */
 /* - waits for and returns termination status */
 fprintf(stderr, "%s: Closing pipe ...", name);
 if(-1 == (ret = pclose(pipe_fp)))
 perror("pclose");
 fprintf(stderr, "%s: Closed. Exiting.\n", name);
 return 0;
}

2.6.7 Supported Characters
During normal operation the hidkey program converts ASCII characters into keyboard scan
codes. When an ASCII character doesn’t obviously map to a keyboard scan code rather than
raise an error or warning it is mapped to a substitute character, a ‘_’.

2.6.8 Performance
During testing it became clear that the sending characters at the fastest rates (smallest polling
intervals) can overflow input buffering on some slower host applications. Specifically, MS Excel
would garble characters when this situation occurred. No such issues were observed when the
host application was a text editor. This is likely to be a function of the host’s performance, the
host’s CPU load and the host application, so it is difficult to provide any guidance.

2.7 USB Flash Drive AutoRun
Speedway Revolution, as of Octane 4.4.0, allows firmware upgrade from a USB Flash Drive.
When a USB Flash Drive is inserted into the reader’s USB slot a program, informally referred to
as AutoRun, is automatically invoked that checks for the presence of firmware upgrade files. The
AutoRun program also checks whether an application specific program is configured so that the
application may check for files on the USB Flash Drive.

2.7.1 USB Flash Drive Preparation
USB Flash drive AutoRun works with VFAT USB flash drives. MAC and Linux (ext2 or ext3)
formatted drives are not supported. Some very old flash drives support an older version of FAT
with 8 character file names (with 3 character extensions); these drives are not supported. Use
Windows XP® or Windows Vista® to manage files and directories on the flash drive, as this
ensures compatibility with VFAT.
On the flash drive create a directory X:\YourCompany\YourProduct. For example, Impinj uses
\impinj\revolution to contain firmware upgrade files. It’s best to use only alphanumeric
characters and no spaces for file and directory names.

Remember that on Windows the path name separator is a backslash (\), while on the reader the
path name separator is a forward slash.

18 . Proprietary and Confidential Revision 4.8.0

2.7.2 HardwareEvents Stanza in reader.conf
The following stanza and parameter have been added to the /cust/sys/reader.conf file on the CAP
to allow a CAP developer to indicate what command line to execute on a Mass Storage event.

[HardwareEvents]
OnMassStorageEvent=/cust/bin/mass_storage_event

This callback is executed with two parameters; the action and the path to the mounted directory.
The action is either add or remove. The mounted directory is the path where the root of the USB
flash drive appears. For example:

/cust/bin/mass_storage_event add /mnt/usbfs/usbsda1

2.7.3 Example Storage Event Handler
Here is an example of how the hidkey program can be used.
#!/bin/bash

if [$# -ne 2]
then
 logger Invalid argument count
 exit 1
fi

ACTION=”$1”
PREFIX=”$2”

if [“$ACTION” == “add”]
then
 if [-f $PREFIX/company/product/config_file]
 then
 cp $PREFIX/company/product/config_file /cust/config/config_file
 logger /cust/config/config_file updated
 fi
elif [“$ACTION” == “remove”]
then
 # The USB flash drive was removed, nothing to do
else
 logger Invalid action
fi

Revision.4.8.0 Proprietary and Confidential 19

3 Platform Boot Process
The Speedway Revolution boot process is a multi-stage procedure that transitions the Atmel
from its internal IROM ultimately to the Linux OS. Figure 3-1 depicts this process in detail. The
initial stages of this procedure are outside the scope of this document. However, the Bootloader
and the Linux OS are relevant to embedded developers and will be covered in the sections that
follow.

Figure 3-1 Speedway Revolution Boot Procedure
Release from

Reset

Initialize Devices

Load Bootstrap
(Data Flash)

IR
O

M

Jump to
Bootstrap

Initialize Devices

Load Bootloader
(Data Flash)

B
oo

ts
tra

p

Jump to
Bootloader

Initialize Devices

Default Detect,
Verify Image, etc.

B
oo

tlo
ad

er

Load Image
(NAND Flash)

Boot Image
(Linux)

3.1 Bootloader
The Speedway Revolution bootloader, UBoot (Universal Bootloader) is open source software.
UBoot performs processor and hardware initialization, detects factory default restore, and
performs firmware image validation, invoking the newest valid image. UBoot is not intended for
direct control by a user in the field and Impinj does not provide direct support for UBoot.

3.1.1 Default Restore
There are two types of default restore, Factory Default Restore (FDR), and Configuration
Default Restore (CDR). The purpose of these default restore options is to allow the end user to

20 . Proprietary and Confidential Revision 4.8.0

reset the reader to a known state. The difference between the two restores is summarized in
Table 3-1.

Table 3-1 Factory Configuration and Default Restore

 Manufacturing
Data SPP CAP

Configuration
Default Restore Unaffected Restored to defaults Notified

Factory Default
Restore Unaffected Restored to defaults Removed

As there is only one default restore button (see Figure 2-1), the two different restores are invoked
by pressing the default restore button at power on for different durations. As an aid, the Power
LED is used to provide feedback for the duration of the button press (see Table 2-2). Table 3-2
provides the different durations required to achieve the two different default restore options.

Table 3-2 Default Restore Button and LED Behavior

 Default Restore
Button Press Power LED

Configuration
Default Restore 3 seconds OFF, 3 seconds, blink RED

Factory Default
Restore 10 seconds

OFF, 3 seconds, blink RED,
7 seconds, blink RED twice

3.1.2 Image Selection
The bootloader determines which of the two application images are valid and which of the two is
the latest. The selected image is automatically booted. Should neither image be valid, the
bootloader will display an error message on the console and blink the Power LED red
indefinitely (see Table 2-2). The watchdog remains enabled in this scenario and the bootloader
simply waits for the watchdog reset. Figure 3-2 documents this process.

Figure 3-2 Image Selection and Boot

Bootloader Entry

Image Validate

Boot Image 1

Wait for
Watchdog Reset

Boot Image 2

Kernel Entry

UBoot

Image 1 Valid
and Newer

Image 2 Valid
and Newer

Neither

Revision.4.8.0 Proprietary and Confidential 21

3.2 Operating System
Once the bootloader has determined the appropriate image to boot, the root file system from the
SOP of that image is mounted and the Linux operating system is started. One of the first
applications that start is mounter, which handles the upgrade scenarios. Once mounter has
completed, the run-time reader applications are spawned, including any custom applications that
have been loaded.

3.2.1 Mounter
Mounter is the application responsible for completing upgrades after the new image has been
booted. Mounter has three primary responsibilities:

• Perform CDR and FDR operations
• Copy partitions not included in the upgrade image from the old image to the new image.
• Notify any CAP applications of CDR and upgrade operations

3.2.1.1 Configuration and Factory Default Restore
If the bootloader detects that either a configuration or factory default restore has been requested,
it conveys this information via image metadata that is outside the scope of this document. Once
mounter recognizes that either a CDR or FDR has been requested, it is responsible for taking the
appropriate actions. For a FDR, mounter will erase the SPP and the CAP partitions, resulting in a
reader with a default configuration and no custom applications. For a CDR, mounter will erase
the SPP, and notify the CAP of the CDR operation via the custom application’s startup script.
For more information on this process, see section 3.2.1.3.

3.2.1.2 Partition Copy
Upgrade image files may contain different combinations of the CAP and SOP partitions. Based
on the content of the upgrade image file, certain partitions may need to be copied from the
previously active image to the new image in order for the upgrade to complete. Table 3-3
documents the allowable image file partition combinations, and lists the actions that the mounter
application will take in each scenario. Note that SOP images are maintained and released by
Impinj. Embedded developers will receive these partitions from Impinj and may then choose to
include them with their CAP partition if desired. The SPP partition cannot be upgraded and thus
is never included in an upgrade image.

Table 3-3 Mounter Operations Based on Upgrade Image Content

CAP SOP Mounter Operation
X Copy SOP/SPP

 X Copy CAP/SPP

X X Copy SPP

3.2.1.3 CAP Notification
During a firmware upgrade or a configuration default restore, the mounter application notifies
any custom applications of the operation so that the app may take appropriate action. This

22 . Proprietary and Confidential Revision 4.8.0

notification is performed by invoking an executable (the upgrade application) within the CAP
partition called:
 /cust/cust_app_upgrade

This application is optional and only required if the custom application wishes to receive
notifications of upgrade or default restore events.
On the first boot after a configuration default restore has been performed, the upgrade
application is called as:
 /cust/cust_app_upgrade cdr

This notifies the custom application that the reader has been restored to its default configuration.
The custom application should then likewise restore any configuration as deemed necessary.
On the first boot after a firmware upgrade (assuming a CAP exists on the secondary image), the
upgrade application is called as:
 /cust/cust_app_upgrade upg <cust_dir> <old_cust_dir>

This notifies the custom application on the primary image that an upgrade has been performed
and that a previous version of the CAP image existed. The argument <cust_dir> represents the
new CAP root directory (in this case, typically /cust), and <old_cust_dir> represents the
previous CAP root directory. The upgrade application can then temporarily (read-only) access
the previous image and may copy any configuration or persistent files to the new partition prior
to the custom application startup.
In addition to the command line arguments, several environment variables are made available to
the upgrade application so that it may infer context. Table 3-4 documents the environment
variables exported to the upgrade application. Note that in instances where a partition does not
exist (such as when there is no secondary SOP or CAP installed on the reader), the environment
variables will not be defined.

Table 3-4 Upgrade Application Environment Variables

Variable Name Description Example
primary_sop_vsn Current SOP version 4.2.0.240
primary_cap_vsn Current CAP version 1.0.2.0

secondary_sop_vsn Previous SOP version 4.0.1.240
secondary_cap_vsn Previous CAP version 1.0.1.0

As the upgrade application is run very early during reader initialization, there are several
restrictions on this application and what it is permitted to do. Failure to follow these restrictions
may result in a failure of the reader to initialize.

• When the upgrade application is invoked, the reader has not completed its boot sequence
yet. This implies that no RFID applications are available, nor is there any network
connectivity. As such, the application should not spawn the actual custom application,
nor should it attempt to access the network.

• When the upgrade application is invoked after an upgrade, <old_cust_dir> is
mounted temporarily and is read-only. Thus all accesses must occur within the upgrade

Revision.4.8.0 Proprietary and Confidential 23

application. This mount point is no longer available once the upgrade application
terminates.

• As the upgrade application is called prior to the run-time reader applications, it must
ensure prompt execution so that reader initialization may proceed. Lengthy upgrade
application execution times (several minutes) may result in a reader reset and if the
situation persists, a fallback to the secondary image.

An example upgrade application (in the form of a Bash shell script) appears in Figure 3-3.
Figure 3-3 Example Customer Upgrade Application

#!/bin/sh

event=$1

echo "Customer application upgrade script enters"
echo "Primary SOP version is $primary_sop_vsn"
echo "Primary CAP version is $primary_cap_vsn"

test ! -z $secondary_sop_vsn &&
 echo "Secondary SOP version is $secondary_sop_vsn"
test ! -z $secondary_cap_vsn &&
 echo "Secondary CAP version is $secondary_cap_vsn"

if [$event = "cdr"] ; then
 echo "Reader has restored its default configuration"
 # Copy default to current configuration
 if [-f /cust/config/default_config] ; then
 cp /cust/config/default_config /cust/config/my_config
 fi
elif [$event = "upg"] ; then
 echo "Reader has been upgraded"
 cust_dir=$2
 old_cust_dir=$3
 # Copy previous to current configuration
 if [-f $old_cust_dir/config/my_config] ; then
 cp $old_cust_dir/config/my_config $cust_dir/config/my_config
 fi
fi

3.2.2 Run-Time Applications
Once the appropriate image partitions have been mounted and any upgrade operations
completed, the run-time reader applications are spawned. This includes applications related to
network management, logging, upgrade, watchdog, and of course, RFID. Applications are
spawned using standard Linux boot procedures and therefore should not assume a boot order.

As the run-time applications are being spawned, any custom applications that are present on the
reader are also started. Custom applications are started like any other run-time app and thus must
adhere to the same restrictions. Specifically:

• No boot order may be assumed. Custom applications must be robust enough to handle
scenarios whereby required resources are not yet available. Figure 3-4 shows how an
application’s start script can wait for network availability before calling the app.

24 . Proprietary and Confidential Revision 4.8.0

• Applications are launched as daemons, and should behave as such. Custom monitoring of
application health may be implemented.

For more information about the spawning of custom applications, see section 4.3.3.

Figure 3-4 Delaying Custom Application for Network

#!/bin/sh

Wait until the network is both connected and we have a DNS server
while true; do
 netconf | grep -q "connectionStatus='Connected'" && dnsconf | grep
-q Server && break
 sleep 1
done
Network is now up!

Now start custom application ...

Revision.4.8.0 Proprietary and Confidential 25

4 Software Development Process
This section provides information about the Speedway Revolution SDK embedded developer
resources and procedures. This information enables a developer to write an example application,
generate the appropriate binaries, install the example application on the reader, and execute the
application.

4.1 Tools
The Speedway Revolution reader uses MontaVista® Linux Professional Edition 5.0 (Pro) as its
operating system. MontaVista® Pro 5.0 is an enhanced version of the open-source Linux 2.6.18
kernel that has advanced capabilities optimized for embedded applications. See
http://www.mvista.com for more information. Any of the versions of Linux supported by
MontaVista® Pro 5.0 may be used to run the scripts and utility programs described below. These
include: Red Hat® Enterprise Linux 3.0 or 4.0, Solaris® 8.0 or 9.0, SUSE® Linux 10.1
Workstation, and SUSE® Linux Enterprise Server 9 service pack 2.
Note: MontaVista is a registered trademark of MontaVista Software, Inc., Red Hat is a registered trademark of Red
Hat, Inc., Solaris is a registered trademark of Sun Microsystems, Inc., SUSE is a registered trademark of Novell Inc.

This document assumes users familiarity with the MontaVista® platform development kit (PDK)
and with GDB, the GNU Project debugger. For more information on GDB, see
http://www.gnu.org. An embedded software developer may develop a custom application using
the Octane EDK and/or Impinj supplied LLRP libraries in C or C++ using any tools based on gcc
version 4.2.0 cross-compiled for the Atmel AT91SAM9260 configured in little-endian mode.

4.2 Distribution
The components necessary to develop on-reader custom applications are distributed as RPMs.
Each component is contained within a single RPM file, the list of components is likely to grow,
here is a list of the current RPMs and their purpose:

• revolution_ltk – Speedway Revolution LLRP Toolkit (libraries and examples).

• revolution_tools – EDK tools, scripts and custom application development
documentation.

• revolution_examples – Examples, specifically demonstrating the use of the EDK.

• revolution_logging – Configuration of the syslog utility.

• revolution_web – Mostly documentation infrastructure.

• revolution_compiler – Re-packaged Montavista cross-development tools (e.g. compiler,
linker etc).

• revolution_octaneSDK – easy to use libraries allowing quick application development
without the need to learn LLRP

As both an accelerator to getting started and as a reference development platform a Virtual
Machine (VM) is also provided and maintained by Impinj. The Impinj Speedway Revolution
EDK VM comes with all the necessary RPMs pre-installed. Updates to the content of each
package will be accrued and released periodically.

26 . Proprietary and Confidential Revision 4.8.0

The YUM package manager is used to manage updates to the packages, all of which are
available from a publicly accessible YUM server.

4.3 Accessing the Linux Shell
The Speedway Revolution reader has its own CLI termed RFID-Shell, or RShell. End users may
access this interface by using the RS-232 console port, or by connecting to the reader over the
network via SSH or Telnet (if configured, see section 4.5.4).. Using this interface, the reader may
be configured and system information displayed. However, for an embedded developer this
interface is insufficient and access to the underlying Linux shell is required. Because of the
critical nature of this interface and the ability to adversely affect reader behavior if misused,
access to the Linux shell (termed OSShell) is protected from the end user.

For an embedded developer, access to this interface is made possible via a custom application
configuration file that is built in to the CAP upgrade image. For details about creating the CAP
partition, please refer to the Speedway Revolution EDK, “Getting Started” link. To enable access
to OSShell via RShell, the following file must be created within the CAP file system.
 /cust/sys/reader.conf

This file does much more than just enable access to OSShell, and specific details can be found in
section 4.5. But for OSShell access, the following lines (or ‘stanza’) must appear within this file.

Figure 4-1 Enabling Access to OSShell
[rshell]
 password=developer

Once an upgrade image built with the CAP partition containing this file is loaded on to the
reader, access to OSShell is enabled using the following RShell command:

> osshell developer

The password ‘developer’ in this example must match the password that exists in the reader
configuration file loaded on to the reader. Invalid passwords will be rejected as if the command
was invalid for security purposes. The OSShell feature is intended for embedded developers
only. If the password is left blank (i.e. ‘password=’), then password checking is disabled.

Impinj highly recommends that the OSShell feature be disabled in deployed CAP image
files.

4.3.1.1 File Transfer Protocol (FTP)
There is an FTP server on the reader that can be used to transfer files to the reader. As a security
measure, this service is disabled by default. To use the FTP server on the reader, the service must
be enabled using the reader configuration file. For information on how to enable FTP, see section
4.5.4.

Note that as with the OSShell password, Impinj does not recommend deploying readers
with this feature enabled.

Revision.4.8.0 Proprietary and Confidential 27

4.3.2 Executing the Custom Application
Now that the custom application has been loaded on to the reader, it may be tested. Connect to
the reader via SSH and attach a serial cable to the DE15 connector on the reader. The procedure
is illustrated using ‘CustApp’, a hypothetical example that accepts some input, prints a message
and exits.
To test the custom application:

1: Log on to the reader as the root user
2: Access OSShell

> osshell developer

3: Navigate to the directory where the custom application binary was stored. If this was a
development build and the file was transferred via NFS or FTP, go to the directory where
the binary was transferred. If this is a deployed image, navigate to the CAP.
cd /cust

4: Run the custom application from the command line. Note that as the application was run
in the foreground, the command prompt will hang up.
./CustApp

5: Now enter several characters in the terminal program. If all is working correctly, those
characters should now appear in both the terminal window and the SSH window where
the application is running. Typing a customized character (‘A’ in the example code),
should result in the customized string appearing in the SSH window. Figure 4-2 is a
sample output from the SSH window.

6: Hit ‘ESC’ to quit the program.
Figure 4-2 Sample Example Application Output

root@SpeedwayR-00-00-BF:/cust#
root@SpeedwayR-00-00-BF:/cust# ./CustApp
abcdefghijklmnopqrstuvwxyz0123456789

Hello Friends!

The End!
root@SpeedwayR-00-00-BF:/cust#

4.3.3 Automatically Starting a Custom Application
The custom application in this example is one that is intended to be run manually and is for
demonstration purposes only. A typical custom application would be started along with the other
run-time reader applications (see section 3.2.2).
To configure a custom application to be spawned when the reader is reset, the Linux boot
process invokes the following application at system startup:
 /cust/start

This application is provided by the embedded developer and must have executable permissions.
This application is spawned only once in the background and it is its responsibility to launch the

28 . Proprietary and Confidential Revision 4.8.0

custom application(s) as required. Of course, this may itself be the custom application, or it could
be a shell script that launches, and perhaps monitors, other applications.
Figure 4-3 is an example of one such script. This example tests for the presence of a custom
application, and if it is executable, spawns it. If the application ends, it logs a message and
respawns the application after a delay to prevent spinning.

Figure 4-3 Example Customer Start Application
#!/bin/sh

export LD_LIBRARY_PATH=/cust/lib

((count = 1))

while true ; do
 if [-f /cust/app/rfid_control] ; then
 if [-x /cust/app/rfid_control] ; then
 /cust/app/rfid_control
 /usr/bin/logger –p user.notice \
 "Restarting custom application, count $count."
 ((count = count + 1))
 fi
 sleep 10
 else
 exit 0
 fi
done

4.3.4 Custom Application Library Dependencies
The Speedway Revolution firmware contains a minimal set of libraries required for the
applications which it supports. It is conceivable that a custom application may require additional
libraries to operate that are not included in the SOP. As part of the Speedway Revolution SDK,
all of the supported MontaVista® Pro 5.0 libraries are included. Embedded applications that
require additional library support may include these libraries in their CAP image and configure
Linux via the LD_LIBRARY_PATH environment variable to scan the CAP partition when
searching for dynamic library dependencies.

A typical example of this might be if a custom application is written in C++ and requires the
dynamic library libstdc++.so that is not included in the SOP. To handle this scenario,
developers should include this library in their CAP file system, and then the custom application
start script should set the LD_LIBRARY_PATH environment variable to point to the appropriate
directory where the shared objects are located (as is done in the sample start script in Figure 4-3).

4.4 Firmware Upgrade Procedure
Speedway Revolution provides three methods for managing the firmware image: upgrade to a
new image, fallback to a previous valid image, and default restore. Upgrades may be
accomplished without disturbing the current reader operation and do not take effect until the
reader is rebooted (which may be automatic). This section describes the upgrade process.

Revision.4.8.0 Proprietary and Confidential 29

4.4.1 Image Versioning Scheme
Each flash partition shown in Figure 2-8 has a version number associated with it. The length of
the version number is 32 bits and the reader internally maintains it as an unsigned integer. The
version number is represented as a string consisting of four fields separated by a dot ‘.’:
ddd.ddd.ddd.ddd, where each field is a decimal number ranging from 0–255. The left-most field
maps to the most significant byte of the internal uint32_t version number. For the purposes of
upgrades, a larger integer number is considered a higher version. There is no other meaning to
the version string. The custom application may use any versioning scheme as long as the version
is 32 bits long, represented in the format shown above, and has a larger number to indicate a
newer version.

4.4.2 RShell Upgrade Methods
Speedway Revolution provides two methods to upgrade the firmware: manual and automatic.
The manual method is where upgrades are performed on a single reader by entering commands
at the RShell interface. The automatic method is where a large network of readers may be
upgraded automatically by managing an upgrade configuration file called a metafile. For the
purposes of embedded software development, the manual method is the most useful. The
automatic method is outside the scope of this document. If the automatic method is desirable,
reference the Speedway Revolution Firmware Upgrade API documentation.
Table 4-1 documents the various manual upgrade commands that are available via the RShell
interface. This table is only intended to be a summary. For complete documentation of all
available image management commands, reference the ‘Speedway Revolution RShell Reference
Manual’.

Table 4-1 RShell Upgrade Command Summary

RShell Command Description Auto-Reset

config image upgrade

Invoke an immediate upgrade. The image
at the provided URI is downloaded to the
reader and installed over the secondary
image.

No, manual
reset required

config image default Perform a configuration default restore.
See Table 3-1 for complete information. Yes

config image fallback Fallback to the secondary image. Yes

config image removecap Completely remove the CAP partition. The
CAP will not be mounted after the reset. Yes

show image summary
Query the status of an upgrade and display
both the primary and secondary image
version information (SOP, SPP, and CAP)

N/A

4.4.3 OSShell Upgrade Methods
In addition to the commands available to end users via RShell, there are commands available to
embedded developers only via OSShell. These commands are intended to directly manipulate the
CAP partition, without the need to perform an upgrade. All of these commands, if given valid
data, will return a status of Command-Being-Processed and will result in an automatic reader
reset when completed.

30 . Proprietary and Confidential Revision 4.8.0

Revision.4.8.0 Proprietary and Confidential 31

Table 4-2 OSShell Upgrade Command Summary

OSShell Command Description Auto-Reset

uaconf formatcap=<ver>

Format the CAP partition. The <ver> field
must be a valid 4-digit dotted version
number (see section 4.4.1). The CAP will
be mounted after the reset with the new
version, but will be empty.

Yes

uaconf removecap=true
Completely remove the CAP partition. The
CAP will not be mounted after the reset. Yes

It should be noted that these commands manipulate the secondary image to achieve their
purpose. Thus, when a CAP is formatted or removed, the actions occur on the secondary images
and after the reader reset, mounter performs the appropriate partition copy procedures (see
section 3.2.1.2). This is significant because performing these operations means the fallback
image is no longer available once completed.

4.5 Reader Configuration
Speedway Revolution is designed to allow custom applications to control many of the features
and services available by the reader. This customization is achieved using the
/cust/sys/reader.conf configuration file that we first visited when discussing OSShell
access (see section 4.3). This section documents the other capabilities of this file.

4.5.1 Configuration File Format
The reader configuration file /cust/sys/reader.conf is logically organized into stanzas. A
stanza is defined as a section of the file that starts with a stanza name enclosed in brackets, and
ends with either the end of the file, or the next stanza name. The opening bracket ([) of the
stanza name must appear as the first character in the line, followed immediately by the stanza
name, then immediately closed with a terminating bracket (]). Characters beyond the closing
bracket of a stanza name are ignored.

Inside a stanza is a set of name value pairs (NVPs) in the form:
name=value

When parsing the NVPs included in a stanza, whitespace is ignored and thus lines may be
indented for clarity. The name portion of the NVP is case-sensitive and thus must appear exactly
as documented to work correctly.

Table 4-3 lists the available stanzas and gives a brief summary of what each configures. As
customizable services are added to the Speedway Revolution firmware, additional stanzas may
be added in the future.

Table 4-3 Configuration Stanzas

Stanza Name Description
[rshell] Configuration of the OSShell access password.

[HardwareEvents] Configuration of callback notifications to CAP
applications based on certain hardware events.

32 . Proprietary and Confidential Revision 4.8.0

Stanza Name Description

[PartnerFeatures] Configuration of specific reader features only
available to select Impinj partners.

[SoftwareFeatures] Configuration of network services and other
software features.

4.5.2 Hardware Events
Speedway Revolution readers have both a USB device and USB host port. Upon detection of
device insertion into one of the USB ports, the Octane firmware has mechanisms whereby
custom applications can be notified of the event. Each notification type has different
characteristics, the details of which are found in Table 4-4 and the sections that follow.

Table 4-4 Hardware Event Notification Types

Hardware Event Port NVP Name NVP Value
Mass Storage Device Host OnMassStorageEvent Callback Script

4.5.2.1 Mass Storage Device
This event is delivered to the custom application via a callback script. The script provided in the
configuration file must be present in the file system with executable permissions. On detection of
a mass storage device insertion or removal from the USB host port, the script will be invoked
with specific command line arguments and environment variables to convey what event has
occurred. The callback script can then take whatever action is required (transfer configuration
files, transfer log files, etc.). Table 4-5 lists the arguments and environment variables made
available to the callback script.

Table 4-5 Mass Storage Event Variables

Variable Name Description
Command Line Argument 1 Event Type: <add | remove>

Command Line Argument 2 File System Path

Environment ACTION Event Type: <add | remove>

Environment MDEV Device Name: e.g. <sda1>

Note that when a mass storage device insertion has been detected, the callback script does not
need to mount the device. The Revolution firmware will already have mounted the device by the
time the callback script is invoked and will pass that path via the second command line argument
(e.g. /mnt/usbfs/usbsda1/).

4.5.3 Partner Features
Some Speedway Revolution features were developed for specific Impinj partners, and must be
explicitly enabled before they will operate. This section of the reader configuration file is used to
enable these features. The details of how this is performed are outside the scope of this

Revision.4.8.0 Proprietary and Confidential 33

document. For information regarding specific features and how they are enabled, please contact
your Impinj Sales Representative.

4.5.4 Software Features
Speedway Revolution firmware supports a number of commonly used network services.
However, by default, only a subset of those services is enabled for security purposes. Embedded
developers may customize those services using the reader configuration file.

Table 4-6 lists the available network services on the reader, and whether they may be
customized. The NVP name is the case-sensitive line that must appear within the
SoftwareFeatures stanza of the reader configuration file to customize the service.

Table 4-6 Customizable Network Services

Service Default NVP Name
DNS-SD (HTTP) On StartDnsSDHttp

DNS-SD (LLRP) On StartDnsSDLlrp

FTP Off StartFTP

LLA On StartLLA

mDNS On StartmDNS

NTP On StartNTP

SNMP On DefaultStartSnmp

Telnet On StartTelnet

FTP Upgrade On AllowUpgradeFTP

HTTP Upgrade On AllowUpgradeHTTP

Web Upgrade On AllowUpgradeWeb

TFTP Upgrade On AllowUpgradeTFTP

HTTP On StartHTTP

4.5.5 Example Configuration File
Figure 4-4 depicts a sample reader configuration file. This is provided as an illustrative example
for embedded developers to better understand the file format and its contents.

34 . Proprietary and Confidential Revision 4.8.0

Figure 4-4 Example Reader Configuration File

This is a sample reader configuration file.
Note that lines beginning with a # are ignored.

[rshell]
 # This is the OSShell password. It should be something more
 # secure than this example, and disabled once deployed.
 password=developer

[HardwareEvents]
 # Invoke special script on a mass-storage device
 OnMassStorageEvent=/cust/bin/sdAction.sh

[PartnerFeatures]
 # Enable some example reader feature here

[SoftwareFeatures]
 # Turn off telnet for security purposes
 StartTelnet=no
 # Turn on FTP for development (TODO: turn off)
 StartFTP=yes
 # Turn off NTP and rely on the RTC for time
 StartNTP=no
 # Do not advertise any reader services
 StartDnsSDHttp=no
 StartDnsSDLlrp=no

Embedded Developer's Guide

Revision 4.8.0 Proprietary and Confidential 35

5 Revision History

Date Revision Comments

04/08/2009 4.0 Original Release

08/27/2009 4.2 Updated for Octane Release 4.2

03/31/2010 4.4 Updated for Octane Release 4.4

06/02/2010 4.4.1 Moved description of tools to EDK web pages

12/14/2010 4.6.1 Updates for release of 4.6 and EDK 1.0

04/25/2011 4.8.0 Updates for Octane 4.8 release

36 . Proprietary and Confidential Revision 4.8.0

Notices:
Copyright © 2011, Impinj, Inc. All rights reserved.

The information contained in this document is confidential and proprietary to Impinj, Inc. This document is
conditionally issued, and neither receipt nor possession hereof confers or transfers any right in, or license to, use the
subject matter of any drawings, design, or technical information contained herein, nor any right to reproduce or
disclose any part of the contents hereof, without the prior written consent of Impinj and the authorized recipient
hereof.

Impinj reserves the right to change its products and services at any time without notice.

Impinj assumes no responsibility for customer product design or for infringement of patents and/or the rights of third
parties, which may result from assistance provided by Impinj. No representation of warranty is given and no liability
is assumed by Impinj with respect to accuracy or use of such information.

These products are not designed for use in life support appliances, devices, or systems where malfunction can
reasonably be expected to result in personal injury.

