API/SDK Instruction for
UHF Reader

ASKA

ASKA
ul. Wedkarska 2A/B1, 04-869 Warszawa
tel. 22 4985908/9, fax 22 6177020

e-mail: ask@aska.com.pl www.kodykreskowe.com

Instruction

The API Development Kit is designed for user developing application software conveniently, which provide to
user in the form of dynamic link file.

It supports Visual C++0VBIC++ Builder and Delphi platform developing environment. User can correct develop
their application software efficiently by reading this instruction manual.

According to the function features, the API function can be classified into two types function: “reader
management function” and “tag operating function”; Tag operating function can be classified as “public function” and
“tag operating function in specific protocol

Function List

® Definition of Data Structure
1. Taglds structure definition
2. Gen2TagList structure definition

3. Gen2LockFlags structure definition

® Reader management function

1. OpenReader

. CloseReader

Open the reader
Close the reader

. SetBaudRate
. SetParameter

Configure the baud rate between PC and reader

. GetParameter

Configure reader working parameters

Read the working parameters of reader

. SetldmData
. GetldmData

Write the required ID matching data to reader.
Read the ID match data

0 NOoO b WODN

. ResetReader

Reset the reader

9. GetFirmwareVersion ------------------

10. BeepControl

-Read the program version of reader firmware

Control the reader buzzer

11. SelectAntenna

Choose the working antenna

12. SetWorkAntenna
13. QueryAntenna

Configure the working antenna for multi-port reader

14.StopRFwork

Query the antenna connecting condition
Stop the reader launching power

15. GetTriggerState
16. SetRelayState

Query reader trigger input state

17. Synchronize

Set reader relay action

Synchronize the reader

® 18000-6B Tag Operating Function

. SingleTagldentify

. SingleTagldentifyEx

Single tag identification

Single tag identifying for multi-port reader

. MultipleTagldentify

. ReadSingleTag

. MultipleTagldentifyEx-----------------

Multiple tag identification

--Multiple tags identifying for multi-port reader

Identify single tag and read designated memory data

. ReadSingleTag0
. WriteSingleTag

Read memory data of designated tag

0 NOoO O~ WDN -

. WriteSingleTag0

Identify single tag and write data to designated memory address

tag
9. LockTag

Write parameters to the designated memory address of specific

10. LockTag0

Identify single tag, and lock the designated tag memory address

Lock the designated memory address of specific tag

11. QueryLock
12. QueryLock0

Query the locking status of designated memory address

Query the locking status of designated tag memory address

® EPC GEN2 Tag Operating Function

0 N O b WDN -

P\ N G e | G O G (o)
© 0o NOoO O WIN—~O

. InitGen2Tag Initialize the EPC Gen2 tag

. InitGen2EpcCode Initialize the EPC code for EPC Gen2 tag
. SingleTagldentify Single tag identification
. MultipleTagldentify Multiple tag identification
. Gen2ReadTag Read the memory data of EPC Gen2 tag
. Gen2WriteTag Write data to the memory area of EPC Gen2 tag
. Gen2ReadTagwithEpc-------------------- Read the memory data of designated EPC Gen2 tag
. Gen2WriteTagwithEpc Modify the EPC code for designated EPC Gen2 tag
. Gen2ReadTagwithEpcPW----------—-—-- Read the memory data of designated cryptographic tag
. Gen2Write TagwithEpcPW-----------—-- Modify the EPC code of designated cryptographic tag
. Gen2SetAccessPassword-------------- Modify the access password for designated tag.
. Gen2GetAccessPassword-------------- Read the access password of designated tag.
. Gen2SetKillPassword-------------------- Modify the kill password for designated tag
. Gen2GetKillPassword-------------------- Read the kill password of designated tag
. Gen2KillTag Kill the designated tag
. Gen2LockTag Lock the designated tag
. Gen2ChangeEAS Modify the EAS bit for designated tag
. Gen2EASAlarm Tag alarm
. Gen2TagContentList List the selected contents of EPC Gen2 tag

e Definition of Data Structure
1. Taglds Structure Definition

typedef struct

{
nsigned char TagType;
nsigned char AntNum;
nsigned char Length;
nsigned char Ids[ID_Length];

}Taglds;

The definition of Taglds Structure is as belowl
® TagType—Tag type

® AntNum—Antenna Serial Number

® | ength—Byte length of tag ID

® |ds— Tag ID value

2. Gen2TagList Structure Definition

typedef struct

{
unsigned char DataMask;
unsigned char EpcLength;
unsigned char TidLength;
unsigned char UserLength;
unsigned char Epc[24];
unsigned char Tid[12];
unsigned char User[64];

}Gen2TagList;

“Gen2TagList” is the required structure for listing EPC, TID and USER data at a time.. Its definition as below:

A DataMask ---The storage area needs to be read, using the bit mask format
DO is “1” -- Reading the EPC code,
DO is “0 “— Doesn’t reading the EPC code
D1 is “1” -- Reading the TID code

D1 is “0” -- Doesn’t reading the TID code

D2 is “1” -- Reading the data of User area

D2 is “0” -- Doesn’t reading the data of User area

D3 ~ D7 ---The five bits data are reserved

EpcLengthlThe double-byte length of EPC code read (DO is “1”)
TidLengthIThe double-byte length of TID code read (D1 is “1”)
UserLengthlThe double-byte length of User data read (D2 is “1”)
EpclEPC code read

TidITID code read

UserllUser data read

> > > > >

3uGen2LockFlags structure definition
typedef struct

{

unsigned char Mask;

unsigned char Action;

}Gen2LockFlag;

typedef struct

{
Gen2LockFlag Kill;
Gen2LockFlag Access;
Gen2LockFlag EPC;
Gen2LockFlag TID;
Gen2LockFlag User;

}Gen2LockFlags;

It stipulates the operating of tag KILL password, ACCESS password, EPC, TID and locking user area. The definition
of Gen2LockFlag is as below:
® MasklOperating range of locking area
® ActionllLocking type
Gen2LockFlags structure definition
® KilllOperational definition for locking KILL password
AccessllOperational definition for locking Access password
EPClOperational definition for locking EPC memory area
TIDIOperational definition for locking TID memory area

UserllOperational definition for locking USER memory area

e Reader Management Function

Reader management function is used to achieve the work of configuring the reader working condition, status
query and function operating by host PC.

1. OpenReader
Function prototype: short OpenReader (HANDLE * hCom, unsigned char LinkType,char *com_port)
Explanation: Open the reader
Input parameter:
® hCom-- Handle
® LinkType—connecting type between reader and PC, “1” for serial port, “2” for network port, “3” for
USB
® Com_port—It is serial port name when serial port connecting; It is reader’s IP address when network
connecting. It is empty character string or any character string when USB connecting.
Return result: the result is zero, which shows the action is correct, others are wrong.
Explanationllt needs to call "OpenReader” function before operating the reader

2. CloseReader

Function prototypelshort CloseReader (HANDLE hCom)
Function explanationlclose the reader
Input parameter:
® hCom-- Handle
Return results: the result is zero, which shows the action is correct, others are wrong
Explanationllt need to call CloseReaderlllwhen quit the application program so as to release system resource.

3. SetBaudRate

Function prototypelshort SetBaudRate (HANDLE hCom, unsigned short BaudRate)

Function explanationlConfigure the baud rate between PC and reader

Input parameterll

® BaudRatellconfiguring BaudRate, the value is 0,1,2,3, 4, the corresponding baudrate is 9600, 19200, 38400,

57600 and 115200bps.

Return results: The result is zero, which shows the action is correct, others are wrong.

Expalination: "SetBaudRate” function is only suitable for modifying the reader Baudrate when connecting the
reader by RS-232

4. SetParameter

Function prototypelshort SetParameter(HANDLE hCom, unsigned int Addr, unsigned char Count, unsigned char
* Parameter)
Function explanationl configuring the reader working parameters.
Input parameterl
® hCom-- Handle
® AddrlThe first working parameter address needs to be configured, range from 2 to 255
® value [The working parameters’ value needs to be configured. For details, please refer to the
instruction manual for ReaderSetup.exe
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanationllt’'s internal function, usually users no need to use it.

5. GetParameter

Function prototype [short GetParameter(HANDLE hCom, unsigned int Addr, unsigned char Count,unsigned
char *Value)
Function explanationlReading the multiple working parameters of reader
Input parameterl
® hCom-- Handle
® AddrlThe first address of working parameters
® Count: The number of parameters
® valuellThe return value of reading working parameters
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanationllt’'s internal function, usually users no need to use it.

6oSetldmData

Function prototype [short SetldmData(HANDLE hCom, unsigned char order,unsigned char match_length,
unsigned int count,Taglds *value)

Function explanationlBefore using the ID matching function, it's necessary to call the “SetldmData” function and
write all the required ID data to the reader.

Input parameter:
® hCom—Handle
® order— Tag ID sort order, 0 for descending order, 1 for ascending order’
® match_length—Byte length needs to be matched.
® count— The number of tag ID
® Value—Tag data. Please refer to the definition of Taglds
Return results: the result is zero, which shows the action is correct, others are wrong

9. GetldmData

Function prototypelGetldmData (HANDLE hCom, unsigned char * moreFlag,unsigned int *count, Taglds *value)
Function explanationlRead the ID match data in reader
Input parameter:

® hCom—Handle
moreFlagIMark for unfinished ID match data
® countlThe number of expected ID matching data when calling this function. It also refers to the
number of actual ID matching data read when function returns
® \alue—Tag data. Please refer to the definition of Taglds
Return results: the result is zero, which shows the action is correct, others are wrong

8. ResetReader
Function prototypelshort ResetReader(HANDLE hCom)
Function explanation: Reset the reader

Input parameter:
® hCom-- Handle
Return results: the result is zero, which shows the action is correct, others are wrong

9. GetFirmwareVersion
Function prototypelshort GetFirmwareVersion (HANDLE hCom, Version * version)
Function explanationlRead the program version of reader firmware.
Input parameterll
® hCom-- Handle
® \ersionlvalue of firmware program, please refers to the Version data structure
Return results: the result is zero, which shows the action is correct, others are wrong.

10cBeepControl

Function prototypelshort BeepControl(HANDLE hCom, unsigned char ControlType)
Function explanationlControl the reader buzzer
Input parameterll
® hCom—Handle
® ControlType— controlling type of buzzer, defined as: 1 start buzzer; 2, stop the buzzer; 3. start the
buzzer and automatically stop the buzzer.
Return results: the result is zero, which shows the action is correct, others are wrong.
ExplanationlUser can control the buzzer action by calling this function.

11cSelectAntenna

Function prototypelshort SelectAntenna(HANDLE hCom, unsigned char AntennaNum)
Function explanationl Choose the working antenna
Input parameterll
® hCom—Handle
® AntennaNumlthe selected working antenna
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanationl it's only used for multi-ports reader(NFC-9812,NFC-9814 etc.). User can operate the designated
antenna and do reading, writing, kill operating for specific tag. This function is not valid for single ports reader.

12o0SetWorkAntenna
Function prototypelshort SetWorkAntenna (HANDLE hCom, unsigned char Antenna)
Function explanationlConfigure the working antenna(channel) for multi-port reader

Input parameterl
® hCom—Handle
® Antenna—Configured antenna, bit mask mode, If DO-D7 is ‘1’, which indicates antena1~8
can work. If it's zero, the corresponding antenna doesn’t work.
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanationllt’'s internal function, usually users no need to use it.

13. QueryAntenna
Function prototypelshort QueryAntenna(HANDLE hCom, unsigned char * Antenna)
Function explanationlQuery the antenna connecting condition(For multi-port reader)
Input parameterl
® hCom—Handle
® AntennallMark of antenna connecting condition, If DO-D7 bit is “1”, ndicate the corresponding antenna
connect to reader. If it's’0”, it means the antenna doesn't connect with reader
Return results: the result is zero, which shows the action is correct, others are wrong.

Explanationllit’'s internal function, usually users no need to use it.

14cStopRFwork

Function prototypelshort StopRFwork(HANDLE hCom)
Function explanationlstop the reader launching power
Input parameterl
® hCom— Handle
Return results: the result is zero, which shows the action is correct, others are wrong.

150GetTriggerState

Function prototypelshort GetTriggerState(HANDLE hCom)

Function explanationlQuery reader trigger input state.

Input parameterl

® hCom— Handle

Return results: The returning results is trigger input state, using bit mark encoding, the minimum significance bit
“D0” indicates the state of trigger 1, If the value is“0”, it means the trigger is invalid, if it's “1”, the trigger is valid; “D1”
indicates the state of trigger 2, there is no definition for “D2-D7”

16oSetRelayState

Function prototypelshort SetRelayState(HANDLE hCom, unsigned char Mask, unsigned char State)
Function explanationll.Set reader relay action
Input parameterll
® hCom— Handle

® Mark— Relay bit mask needs to be operated; DO is for operating”relay 1”.
If DO value is”1”, it means the state value will affect the change of reply state. If the value is “0”, then
there is no impact. The definition for D1-D3 is the same as DO.
® State—The bit mask for reply state needs to be changed,, “1” indicates the corresponding replay is
closed, “0” indicates the corresponding replay is disconnected.
Return results: the result is zero, which shows the action is correct, others are wrong.

170Synchronize

Function prototypelSynchronize(HANDLE hCom)
Function explanationlSynchronize the reader
Input parameterll
® hCom— Handle
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanation: This function is used for multiple readers work together and uses the synchronization function. (The
host PC maintains the readers’ synchronization)

¢18000-6B Tag Operating Function

Tag operating function is used to achieve the work of identifying tag, reading/writing tag, lock tag memory and query
memory status etc.

1oSingleTagldentify

Function prototypelshort SingleTagldentify(HANDLE hCom, unsigned int TagType, unsigned char *ID)
Function explanationSingle tag identification
Input parameterll
® hCom— Handle
® TagTypelTag type identification,
“1” ----1SO18000-6B tag,
“4’----EPC Gen2 tag.
“6” -—--TID of Gen2 tag
® |DI return value of identified tag
Return results: the result is zero, which shows the action is correct, others are wrong.

2oSingleTagldentifyEx

Function prototype [short SingleTagldentifyfEx(HANDLE hCom, unsigned int TagType, unsigned int *
Count,Taglds *value)
Function explanationlsingle tag identifying for multi-port reader
Input parameterll
® hCom— Handle
® TagTypelTag type identification,
“1” ----1ISO18000-6B tag,
“4”----EPC Gen2 tag.
“6” -—--TID of Gen2 tag
® CountlThe number of Identified tags

® 1l Return value of identified tag. Please refer to the definition of Tagids
Return results: the result is zero, which shows the action is correct, others are wrong.
ExplanationlThe function is suitable for single tag identifying of multi ports reader.(Model No.NFC-9812, NFC-

9814)

3oMultipleTagldentify

*

Function prototype [short MultipleTagldentify(HANDLE hCom, unsigned int TagType, unsigned char
Count,Taglds *value)
Function explanationl Multiple tag identification
Input parameterll
® hCom— Handle
® TagTypelTag type identification,
“1” ----1ISO18000-6B tag,
“4”----EPC Gen2 tag.
“6” ----TID of Gen2 tag
® CountlThe number of Identified tags
® vawell Return ID value of identified tags. Please refers to the definition of Taglds
Return results: the result is zero, which shows the action is correct, others are wrong.

4oMultipleTagldentifyEx

Function prototype [short MultipleTagldentifyEx(HANDLE hCom, unsigned int TagType, unsigned int *
Countlunsigned char *ID)
Function explanationIMultiple tags identifying for multi-port reader
Input parameterll
® hCom— Handle
® TagTypellTag type identification,
“1” ----ISO18000-6B tag,
“4’----EPC Gen2 tag.
“6” -—--TID of Gen2 tag
® CountlThe number of Identified tags
® vaell Return ID value of identified tags.
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanation: By using this function, it can identify all the tags in front of multi-antenna. It’'s suitable for multi-port
reader. (Model No.NFC-9812, NFC-9814)

50ReadSingleTag

Function prototypelshort ReadSingleTag(HANDLE hCom, unsigned int TagType, unsigned char Addr,unsigned
char Length,unsigned char *Id,unsigned char *value)
Function explanationlldentify single tag, and read the designated memory data.
Input parameterll
® hCom— Handle
® TagType— Tag type identification, “1” for ISO18000-6B tag,
® AddrlByte address of tag memory.

® [Lengthltag byte length needs to be read
® |dlreturn value of identified tag ID
® \Valuelreturn value of reading memory data

Return results: the result is zero, which shows the action is correct, others are wrong.

6cReadSingleTag0

Function prototypellshort ReadSingleTag0(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned
char Addr,unsigned char Length,unsigned char *value)
Function explanationl] Read memory data of designated tag.
Input parameterl
hCom— Handle
TagType— Tag type identification, “1” for ISO18000-6B tag,
Addrlbyte address of tag memory
Lengthlbyte length read
Id0ID of designated tag
Valuelreturn value of reading memory data

Return results: the result is zero, which shows the action is correct, others are wrong.

7oWriteSingleTag

Function prototype Ishort WriteSingleTag(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned
char Addr,unsigned char Length,unsigned char *valuellunsigned char * Result)
Function explanationlidentify single tag , and write data to the designated memory address
Input parameterll
hCom— Handle
TagType— Tag type identification, “1” for ISO18000-6B tag,
Addrlbyte address of tag memory
Lengthlbyte length needs to be written
Id0return value of identified tag ID
Valuellthe value which needs to be written into tag memory.
ResultlThe returning result for writing tag, the results are:
“0” for writing failed;
“1” for writing succeeded;
“2” for not writable;
3" for unknown results

Return results: the result is zero, which shows the action is correct, others are wrong.
8uWriteSingleTag0

Function prototypelshort WriteSingleTagO(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned
char Addr,unsigned char Length,unsigned char *value,unsigned char * Result)

Function explanationWrite parameters to the designated memory address for specific tag.(The Parameters

1

with designated byte length)
Input parameterll
hCom— Handle
TagType— Tag type identification, “1” for ISO18000-6B tag,
Addrlbyte address of tag memory
Lengthlbyte length needs to be written
Id0return value of identified tag ID
Valuelthe value which needs to be written into tag memory.
ResultlThe returning value for writing tags, the results are:
“0” for writing failed;
“1” for writing succeeded;
“2” for not writable;
3" for unknown results
Return results: the result is zero, which shows the action is correct, others are wrong.

9oL ockTag

Function prototype [short LockTag(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned char
Addr)

Function explanationlidentify single tag, and lock the designated tag memory address
Input parameterll
hCom— Handle
TagType— Tag type identification, “1” for ISO18000-6B tag,
Addrlbyte address of tag memory which needs to be locked.
® |Dlidentified tag ID No.
Return results: the result is zero, which shows the action is correct, others are wrong.

10cLockTag0

Function prototype Ishort LockTag0O(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned char
Addr)

Function explanationlLock the designated memory address of specific tag
Input parameterll
® hCom— Handle
® TagType— Tag type identification, “1” for ISO18000-6B tag,
® Addrlbyte address of tag memory which needs to be locked.
® |DI[designated tag ID No.

Return results: the result is zero, which shows the action is correct, others are wrong.

110QueryLock

Function prototypelshort QueryLock(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned char
Addr, unsigned char Length,unsigned char * Value)

Function explanationlidentify single tag, and query the locking status of designated memory address

Input parameterll
® hCom— Handle

TagType— Tag type identification, “1” for ISO18000-6B tag,
Addrlbyte address of tag memory which needs to query the locking status.
ID0 Returning value of identified tag ID.
LengthIThe number of bytes which needs to query the locking status.
ValuelThe locking status of corresponding bytes(returned by reader).

“1” for locked; “2"for unlocked;”3” for unknown locking status.
Return results: the result is zero, which shows the action is correct, others are wrong.

120QuerylLock0

Function prototype [short QueryLockO(HANDLE hCom, unsigned int TagType, unsigned char *Id,unsigned char
Addrlunsigned char Length,unsigned char * Value)

Function explanationlquery the locking status of designated memory address for specific tag

Input parameterll
® hCom— Handle
TagType— Tag type identification, “1” for ISO18000-6B tag,
Addrlbyte address of tag memory which needs to query the locking status.
IDOdesignated tag ID value
LengthIThe number of bytes which needs to query the locking status.
ValuelThe locking status of corresponding bytes(returned by reader).
“1” for locked; “0”for unlocked;”2” for unknown locking status.

Return results: the result is zero, which shows the action is correct, others are wrong.

oEPC GEN2 Tag Operating Function

1olnitGen2Tag
Function prototypelshort InitGen2Tag(HANDLE hCom)
Function explanationlinitialize the EPC Gen2 tag

Input parameterll

® hCom— Handle
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanation: It aims at the uninitialized tag. Please contact the tag supplier if the tag is initialized.

2o0lnitGen2EpcCode

Function prototype: short InitGen2EpcCode(HANDLE hCom,unsigned char Mustlnit,unsigned char * EpcCode)
Function explanationlinitialize the EPC code for EPC Gen?2 tag
Input parameterll

® hCom— Handle

® MustInitlWhether the tag need to initialize parameters or not.. “1” for yes,”0” for no need.
® EpcCodelThe EPC code which needs to be written into tag

Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation: It contains “InitGen2Tag” function when calling the function of “InitGen2EpcCode”

3. SingleTagldentify

Function prototypelshort SingleTagldentify(HANDLE hCom, unsigned int TagType, unsigned char *ID)
Function explanationl single tag identification
Input parametersl
® hCom— Handle
® TagTypelTag type identification, 4 for EPC code, 6 for TID code.
® |D0The returning ID value of identified tag
Return results: the result is zero, which shows the action is correct, others are wrong.

4. MultipleTagldentify

Function prototype [short MultipleTagldentify(HANDLE hCom, unsigned int TagType, unsigned int *
Countlunsigned char *ID)
Function explanationIMultiple tag identification
Input parametersl
® hCom— Handle
® TagTypelTag type identification, 4 for EPC code, 6 for TID code.
® CountlThe number of identified tags
® |D0The returning ID value of identified tags
Return results: the result is zero, which shows the action is correct, others are wrong.

5. Gen2ReadTag

Function prototype: short Gen2ReadTag(HANDLE hCom,unsigned char MemBank,unsigned Addr,unsigned
char Length,unsigned char * Data)
Function explanationlRead the memory data of EPC Gen2 tag
Input parametersl
® hCom— Handle
® MemBanklDesignated memory areal 1 for EPC, 2 for TID, 3 for USER
® AddrlDesignated memory address needs to be read
® |LengthlData length in designated memory area which needs to be read
® DatalThe returning data value when read designated memory area.
Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation: The calling of’ Gen2ReadTag” function is related with tag, please contact the tag supplier if the tag
with TID and USER.

6. Gen2WriteTag

Function prototype: short Gen2WriteTag(HANDLE hCom,unsigned char MemBank,unsigned Addr, unsigned

1

char Length ,unsigned char * Data)
Function explanationlWrite data to the memory area of EPC Gen tag
Input parametersl

® hCom— Handle
® MemBanklDesignated memory areal 1 for EPC, 3 for USER
® AddrlDesignated memory address needs to be written
® LengthlDouble byte data length in designated memory area which needs to be written
® DatalThe required writing data.

Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation: The calling of” Gen2WriteTag” function is related with tag, please contact the tag supplier if the tag
with USER area.

70Gen2ReadTagWithEpc

Function prototype [short Gen2ReadTagWithEpc(HANDLE hCom,unsigned char MemBank,unsigned
Addr,unsigned char ReadLen,unsigned char *ReadData,unsigned char Scope,unsigned char Length,unsigned char
*MaskData)

Function explanationll Read the memory data of designated EPC Gen2 tag
Input parametersl
® hCom— Handle
® MemBankIMemory type
Value is 1 --- Read the EPC memory data.
Value is 3 --- Read the USER memory data.
® AddrlThe start reading address
EPCIRange 2~7,
USERIDouble byte address, starts from 0
® ReadLenlDouble data byte length needs to be read
ReadDatalData read
® Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
® LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

8uGen2WriteTagWithEpc

Function prototype: short Gen2WriteTagWithEpc(HANDLE hCom,unsigned char MemBank,unsigned
Addr,unsigned char WriteLen,unsigned char *WriteData,unsigned char Scope,unsigned char Length,unsigned char
*MaskData)

Function explanationlModify the EPC code for designated EPC Gen2 tag

Input parametersl
® hCom— Handle

® MemBankIMemory type
Value is 1 --- Write data to EPC memory
Value is 3 --- Write data to USER memory
® AddrlThe start writing address
EPCIRange 2~7,
USERIDouble byte address, starts from 0
® WriteLenDouble data byte length needs to be written,
® \WriteDatalData needs to be written
® Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
® LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

9oGen2ReadTagWithEpcPW

Function prototype: short Gen2ReadTagWithEpcPW(HANDLE hCom,unsigned int Password,unsigned char
MemBank,unsigned Addr,unsigned char ReadLen,unsigned char *ReadData,unsigned char Scope,unsigned char
Length,unsigned char *MaskData

Function explanationlRead the memory data of designated cryptographic tag

Input parametersl

® hCom— Handle
® Passwordlaccess password of tag
® MemBankIMemory type
Value is 1 --- Read EPC memory data
Value is 3 --- Read USER memory data
® AddrlThe start reading address
EPCIRange 2~7,
USERIDouble byte address, starts from 0
® ReadlLenlDouble data byte length needs to be read,
® ReadDatallData read
® Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
® LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

100Gen2WriteTagWithEpcPW

Function prototype: short Gen2WriteTagWithEpcPW(HANDLE hCom,unsigned char Password,unsigned char
MemBank,unsigned Addr,unsigned char WriteLen,unsigned char *WriteData,unsigned char Scope,unsigned char
Length,unsigned char *MaskData)

Function explanationIModify the EPC code of designated cryptographic tag
Input parametersl
® hCom— Handle
® Passwordlaccess password of tag
® MemBankIMemory type
Value is 1 --- Write data to EPC memory
Value is 3 --- Write data to USER memory
® AddrlThe start writing address
EPCIRange 2~7,
USERIDouble byte address, starts from 0
® WriteLenDouble data byte length needs to be written,
WriteDatallData needs to be written
® Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
® LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

11cGen2SetAccessPassword

Function prototype: short Gen2SetAccessPassword(HANDLE hCom,unsigned int Password,unsigned int
Password2,unsigned char Scope,unsigned char Length,unsigned char *MaskData)
Function explanationlModify the access password for designated tag.

Input parametersl

hCom— Handle
Passwordloriginal access password of tag
Password2New access password needs to be configured
Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

120Gen2GetAccessPassword

Function prototype: short Gen2GetAccessPassword(HANDLE hCom,unsigned int Password,unsigned int *
Password2,unsigned char Scope,unsigned char Length,unsigned char *“MaskData)
Function: Read the access password of designated tag.

Input parametersl

® hCom— Handle
® Passwordloriginal access password of tag
® Password2laccess password read

® Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
® LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

13. Gen2SetKillPassword

Function prototype [short Gen2SetKillPassword(HANDLE hCom,unsigned int Password,unsigned int
Password2,unsigned char Scope,unsigned char Length,unsigned char *MaskData)
Function explanationl modify the kill password for designated tag
Input parametersl
hCom— Handle
PasswordlAccess password of tag
Password2[The kill password needs to be configured
Scopelvalue=1, comparing with EPC memory;

Value=2, comparing with TID memory.
LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

140Gen2GetKillPassword

Function prototype [short Gen2GetKillPassword(HANDLE hCom,unsigned int Password,unsigned int *
Password2,unsigned char Scope,unsigned char Length,unsigned char *“MaskData)
Function explanationlRead the kill password of designated tag
Input parametersl
hCom— Handle
PasswordlAccess password of tag
Password2[The kill password read
Scopelvalue=1, comparing with EPC memory;

Value=2, comparing with TID memory.
LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

150Gen2KillTag

Function prototypelshort Gen2KillTag(HANDLE hCom,unsigned int Password,unsigned char Scope,unsigned
char Length,unsigned char *MaskData)
Function explanationlKill the designated tag
Input parametersl
® hCom— Handle

® PasswordlThe kill password of tag
® Scopelvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
® LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

16o0Gen2LockTag

Function prototype [short Gen2LockTag(HANDLE hCom,unsigned int Password, Gen2LockFlags*
LockFlag,unsigned char Scope,unsigned char Length,unsigned char *MaskData)

Function explanationllock the designated tag
Input parametersll

hCom— Handle
PasswordlThe access password of tag
Gen2LockFlagsll Operating scope and content needs to be locked. It's a data structure.

Scopellvalue=1, comparing with EPC memory;
Value=2, comparing with TID memory.
LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.

170Gen2ChangeEAS

Function prototype 0 short Gen2ChangeEAS(HANDLE hCom,unsigned int Password,unsigned char
EASFlag,unsigned char Scope,unsigned char Length,unsigned char *MaskData)

Function explanationlModify the EAS bit for designated tag
Input parametersll

hCom— Handle

Password—Modify the access password for designated tag
EASFlagl The EAS mark bit needs to be configured
Scopellvalue=1, comparing with EPC memory;

Value=2, comparing with TID memory.
LengthlByte length of compared data
® MaskDatallThe data needs to be compared; Scope value=1, stands for EPC code; Scope value=2,
stands for TID code.
Return results: the result is zero, which shows the action is correct, others are wrong.
Explanation: Please contact the tag supplier if the tag with EAS bit.

180Gen2EASAlarm

Function prototypelshort Gen2EASAlarm(HANDLE hCom)
Function explanationlTag alarm
Input parametersll

® hCom— Handle
Return results: the result is zero, which means giving alarm, others are wrong.

190Gen2TagContentList

Function prototypelshort Gen2TagContentList(HANDLE hCom, Gen2TagList * Data)
Function explanationlList the selected contents of EPC Gen?2 tag
Input parametersll

® hCom— Handle
® Data—GenZ2TagList structure, explain for the required listing tag parts and returned tag data. For
details, please refer to the definition of “Gen2TagList”
Return results: the result is zero, which shows the action is correct, others are wrong.

